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Abstract
Broadband plays an important role in modern economic activity, yet remains unaffordable or
uncompetitive for many U.S. households, prompting historic public investment. Two flagship
initiatives, the Affordable Connectivity Program (ACP) and the Broadband Equity, Access,
and Deployment (BEAD) program, form the core of the federal broadband policy. However,
their effects on welfare and market structure remain poorly understood. Using rich data on
markets, providers, and broadband products, I combine a difference-in-differences design with
continuous treatment and a structural model of demand, entry, and product choice to quantify
their effects. The ACP, a $30 monthly household subsidy, increases social surplus and generates
up to $1.90 in welfare per dollar spent. The BEAD program, which subsidizes providers’
fixed costs, expands entry and product variety, but also raises marginal costs and prices, with
larger welfare gains per dollar spent of up to $10.70, which peaks at intermediate subsidy
intensities (25–50%) in the long run. These findings highlight a key policy trade-off: demand-
side subsidies yield immediate, cost-effective affordability gains, while supply-side subsidies
reshape competition to foster long-term efficiency, albeit at higher fiscal cost.
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1 Introduction

Broadband has become a critical infrastructure for modern economic activity, driving productiv-

ity, supporting employment, and fostering regional development (Bertschek et al., 2016). The

COVID-19 pandemic underscored this role: households with broadband could work, study, and

access healthcare remotely, whereas those without broadband were left behind. However, U.S.

broadband markets remain highly concentrated, with over three in five Americans depending on a

single provider and often paying prices up to five times higher than in competitive markets.1 The

fundamental challenge is economic: deploying high-speed networks requires substantial upfront

investment.2 High fixed costs discourage private investment in sparsely populated areas, where

revenue rarely covers expenses. However, connecting these households generates large social ben-

efits (e.g., in education, healthcare, and economic opportunities) that firms cannot monetize. This

gap between private and social returns is a classic market failure that warrants policy interven-

tion (Tirole, 1988; Bourreau et al., 2020). The 2021 Infrastructure Investment and Jobs Act (IIJA)

responds with $65 billion subsidies. Its two flagship programs address distinct barriers: the Af-

fordable Connectivity Program (ACP, $14.2 billion) helps low-income households afford services,

while the Broadband Equity, Access, and Deployment (BEAD, $42.45 billion) program subsidizes

network buildout. Yet, as of 2024, over one-third of Americans still lack competitive options or

high-speed access.3 The persistence of unmet needs despite these unprecedented subsidies under-

scores the need for a rigorous evaluation of their effectiveness in ensuring that public funds achieve

their intended goals.

In this paper, I address three questions: (i) How do subsidies alter welfare and market struc-

ture? (ii) What is the optimal level of subsidy to implement, and (iii) is it more effective to target

supply or demand? Answering these questions is critical for three reasons. First, the magnitude

of public investment in one of the nation’s largest broadband affordability initiatives underscores

its significance. The IIJA allocated unprecedented funding to broadband subsidies, highlighting

the need to evaluate their effective deployment.4 Second, the broadband market is characterized

1Executive Order 14036 on Promoting Competition in the American Economy.
2According to the 2023 Fiber Deployment Report, underground fiber costs 11–24 per foot and aerial fiber 4–9 per

foot, with labor accounting for over two-thirds of costs. See Fiber Deployment Annual Report 2023, p.2.
3FCC 2024 Broadband Progress Report, p. 4, §3.
4https://docs.fcc.gov/public/attachments/DOC-380259A1.pdf
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by high fixed costs and limited competition, conditions under which government initiatives often

have complex and unintended effects on key equilibrium outcomes and market structures. Third,

policymakers face a trade-off between short-term affordability, promoted by ACP, and long-term

market sustainability, supported by the BEAD program. However, empirical evidence on how to

balance the competing objectives of short-term affordability and long-term sustainability is scarce,

leaving a critical gap that this paper seeks to fill.

I construct a rich dataset at the market, provider, and product levels by merging FCC Form 477

data, the Urban Rate Survey, the American Community Survey, and hand-collected federal pro-

gram records.5 I begin with a difference-in-differences design with continuous treatment, exploit-

ing cross-state variation in per-capita subsidy allocation intensity to trace how broadband prices

and service quality evolve following the announcement of federal broadband funding. The reduced-

form evidence indicates that states more exposed to subsidy allocations experience relative declines

in prices and improvements in product quality compared with the pre-intervention period. While in-

formative, difference-in-differences cannot disentangle demand- and supply-side effects, simulate

counterfactual subsidy policies, or capture firms’ strategic responses. Therefore, to quantify these

mechanisms and evaluate policy counterfactuals, I estimate a structural model of a two-stage game.

In the first stage, firms choose their product offerings. In the second stage, they observe demand

and compete on prices à la Nash-Bertrand. Since introducing a product involves both marginal and

fixed costs that jointly determine profitability, firms compute equilibrium profits for all possible

product configurations and select the set that maximizes expected profits. I estimate the model in

the same order, beginning with demand and pricing in the second stage and recovering fixed costs

from entry decisions in the first stage. Demand is estimated following Berry (1994), a framework

well suited to broadband’s differentiated products, whereas the entry stage follows Fan and Yang

(2024) which is more convenient to model markets with many firms and product choices.

The estimated demand system suggests that, on average, a 1% increase in broadband prices

results in a 5.85% decrease in broadband demand ceteris paribus. This estimate is consistent with

5Section 2.2 and Appendix A provide details on the data sources, cleaning procedures, and variable construction.
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values reported in the literature.6 The first-stage estimates indicate substantial heterogeneity in

fixed costs, which increase with market size. Average fixed costs (in millions of dollars) range

from 0.49–1.25 in small markets, 0.97–3.01 in medium markets, and 1.79–6.26 in large markets.7

These costs, which encompass salaries, rent, and insurance, are difficult to validate because of

scarce public data, but they align broadly with the figures reported in the industry sources.8

Using the estimated structural model, I conduct counterfactual policy analyses to address the

research questions. First, the BEAD program, a 75% reduction in firm-fixed costs, induces signif-

icant firm entry (13.9–19.5%) and product expansion (12.6–16.7%), but also raises marginal costs

and prices as firms expand into high-cost areas and compete for scarce skilled labor. The social

surplus rises by 3.4–4.7%, although gains and benefit-cost ratios diminish at higher subsidy inten-

sities, suggesting an optimal range of 25–50% reduction in firm-fixed costs. In contrast, the ACP,

a $30 monthly household subsidy, generates larger welfare gains, increasing the social surplus by

7.6–8.8% with benefit–cost ratios between $1.28 and $1.91, while leaving the market structure

largely unchanged. These results reveal a central policy trade-off: ACP is more cost-effective in

improving affordability, whereas the BEAD program promotes long-run competition and infras-

tructure expansion at higher fiscal costs but yields cost-effectiveness in the long run.

This paper makes two contributions to the literature: methodological and empirical. Method-

ologically, it advances research on the broadband market structure by integrating demand estima-

tion into models of firms’ endogenous product choices and entry decisions. While most prior stud-

ies have either examined how market structure affects competition (e.g., Xiao and Orazem (1999);

Flamm and Varas (2022); Gadiraju et al. (2018)) or estimated consumer demand without modeling

firms’ strategic supply responses (e.g., Espı́n and Rojas (2024)), few have combined both elements.

Kearns (2024), the most closely related work, links demand estimation to entry but in a setting

with few players and incomplete information. In contrast, this paper introduces a structural entry

framework that allows firms to choose among many potential products while accounting for strate-

6For instance, in the U.S. broadband industry, Kearns (2024) estimates own-price elasticities of -4.73, -4.46, and
-4.16 for low-, middle-, and high-income households, respectively. Similarly, Goetz (2019) reports a mean own-
price elasticity of -5.9. In the Colombian broadband market, Hidalgo (2024) estimates an own-price elasticity of
-4.6. Additionally, in the U.S. cable industry, which is closely related to the U.S. broadband industry, Crawford and
Yurukoglu (2012) find mean own-price elasticities of -4.1 for cable services and -5.4 for satellite services.

7Standard deviations range from 1.14 to 1.15 for small markets, 2.16–3.00 for medium markets, and 0.35–5.00 for
large markets.

8https://businessplan-templates.com/blogs/running-costs/internet-service-provider
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gic interactions under complete information. By leveraging recent advances in moment-inequality

methods for entry games to a setting with many firms and rich product portfolios (e.g., Fan and

Yang (2024)), the model captures key institutional features of the U.S. broadband market that ex-

isting studies abstract from. Second, this paper empirically contributes to the literature on public

investment in broadband infrastructure. Bourreau et al. (2020) show that State Aid programs in

Europe since 2003 have expanded broadband coverage, often complementing private investment.

In the U.S., Kearns (2024) evaluates local subsidy effects on closing the digital divide in Seattle,

while Espı́n and Rojas (2024) study the ACP and the BEAD program but hold the market struc-

ture fixed, limiting their assessment of the BEAD program. In contrast, this paper provides the

first nationwide evaluation of ACP and the BEAD program in a structural framework that jointly

models demand and supply, allowing subsidies to influence prices, product variety, entry, and wel-

fare through both consumer adoption and firms’ strategic responses. Related evidence from Wilson

(2025) shows that municipal broadband investment can spur private investment via dynamic pre-

emption, a finding that is consistent with my results on subsidy-induced market expansion.

The remainder of this paper is organized as follows. Section 2 presents an overview of the industry

background and data. Section 3 introduces the empirical model. Section 4 discusses the estimation

strategy. Section 5 presents the empirical results. Section 6 provides counterfactual experiments.

Finally, Section 8 concludes the paper.

2 Industry Background and Data

This section provides an overview of the industry background, along with a detailed description of

the data and their respective sources.

2.1 Industry Background

2.1.1 Current Landscape

The U.S. broadband industry is a crucial sector that fuels economic growth and boosts produc-

tivity. This analysis examines the residential broadband usage that has benefited from significant

government funding programs aimed at improving accessibility. Broadband is offered in several
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forms, with internet service providers (ISPs) competing through differences in speed, data limits,

and pricing.

Traditionally, local telephone and cable companies have been the primary providers of broad-

band services. Telephone companies deliver the internet through Digital Subscriber Line (DSL)

technology, utilizing older copper wires installed on telephone poles. In contrast, cable companies

provide broadband using coaxial cables, which were originally deployed for television services.

Today, the broadband industry has expanded with more companies, including large nationwide

providers and smaller local providers. Local governments participate in the market in most states,

except in a few states, including Texas, where state laws significantly restrict municipal govern-

ments from directly providing broadband services to residents.9 10 Most U.S. households connect

to the internet through one of the following technologies: DSL, cable, fixed wireless, or fiber op-

tics.11 Fixed wireless transmission of the internet via radio signals from a fixed tower to a receiver

at the customer’s location makes it a practical solution for rural and remote areas where wired in-

frastructure is costly or impractical. It offers relatively high speed and low installation costs. In

contrast, fiber-optic broadband uses thin glass or plastic strands to transmit data as light pulses,

offering superior speed, reliability, and bandwidth. It supports symmetrical upload and download

speeds, low latency, and high-demand applications such as streaming, clouding services, and re-

mote work. However, fiber deployment requires a significant investment and is primarily available

in urban and suburban areas.

The literature has identified several key aspects of the U.S. broadband industry. A major find-

ing is that broadband services are a significant financial burden for many American households.

Furthermore, competition among residential ISPs is limited in most local markets, with some ar-

eas offering fewer options for consumers (Flamm and Varas, 2022). These challenges contribute

to what the federal government calls the “digital divide”. This term refers to the gap between

individuals, households, and geographic regions that have access to modern information and com-

munication technology (ICT), such as broadband internet, and those that do not. Factors such

as socioeconomic status, geographical location, and digital literacy contribute to this disparity,

resulting in unequal access to opportunities for education, employment, healthcare, and social par-

9https://www.baller.com/wp-content/uploads/BallerStokesLideStateBarriers7-1-20.pdf
10https://broadbandnow.com/report/municipal-broadband-roadblocks-2023
11See Appendix B for illustrative images.
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ticipation. Recognizing the digital divide as a major obstacle to economic and social inclusion,

especially for underserved and rural communities, the federal government has introduced various

subsidy programs aimed at bridging this gap. These initiatives focus on making internet services

more affordable and expanding broadband infrastructure to improve access.

2.1.2 Subsidies

The U.S. federal government introduced significant investments through the IIJA, which was passed

by Congress in 2021. This initiative aims to enhance broadband accessibility and affordability

through two primary objectives: direct consumer subsidies provided by the ACP and provider-

focused investments through the BEAD program. The total funding allocated under these programs

was approximately $65 billion, with $14.2 billion dedicated to ACP and $42.45 billion allocated to

the BEAD program.

ACP was introduced as a successor to the Emergency Broadband Benefit (EBB). The EBB

program, which began in February 2021 and ended later in 2021, reached nearly nine million low-

income households, providing a subsidy of up to $50 per month for eligible households to help

cover internet costs. Following the conclusion of the EBB, the ACP was launched, enrolling 20

million households and offering a monthly discount of up to $30 for eligible households, and $75

for those residing in qualifying tribal lands. Additionally, eligible households could receive a one-

time discount of up to $100 to purchase a laptop, desktop computer, or tablet from participating

providers, provided they contributed between $10 and $50 to the purchase price.12

The BEAD program was the most significant investment targeting broadband providers, with

the goal of reducing deployment costs and encouraging market entry. The program typically al-

locates funds to states based on the number of underserved areas within their jurisdictions, which

is further confirmed by the data (see Figures 1 and 2). These underserved areas were identified

based on their geographic location and defined according to the FCC criteria for unserved areas

as broadband-serviceable locations that either have no access to broadband services or lack access

to reliable broadband services with speeds of at least 25 and 3 megabits per second (Mbps) for

downloads and uploads, respectively, and a latency of less than or equal to 100 milliseconds.13

12https://www.fcc.gov/acp
13https://broadbandusa.ntia.doc.gov/
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Consequently, states cannot independently influence the amount of subsidies they receive or nego-

tiate for fund allocations.

2.2 Data

This paper uses publicly available data from five distinct sources, with the first being the Urban

Rate Survey (URS).14 URS data are collected annually by the FCC from a randomized sample of

ISPs operating in a small number of urban census tracts. The sampling unit is the pairing of a

census tract and ISP. The dataset spans the period from 2015 to 2024 and refers to data from the

previous year, effectively covering the period from 2014 to 2023. ISPs are required to report various

plan characteristics, including advertised download speeds (downstream), advertised upload speeds

(upstream), data allowances, prices charged to consumers, and weights for all plans offered in the

sampled tracts. The weight variable is computed by the FCC and is intended to indicate how widely

the plan is available in a given census tract. Therefore, this does not necessarily indicate the number

of subscribers using each plan.

The second source is the FCC Deployment Data.15 These data are collected semiannually by

the FCC (in June and December) and span the period from 2014 to 2021. ISPs are required to

complete the form and certify the accuracy of all the information provided. The ISPs report data

for census blocks that offer internet services at speeds above 200 kilobits per second (download and

upload). The dataset includes information on ISPs and details of whether the provided technology is

a DSL, fixed wireless, cable modem, or fiber optics. The ISPs also report the maximum download

speed, maximum upload speed, and whether the service is intended for residential use, business

use, or both. In this study, I focus on residential broadband access; therefore, I only consider plans

designed for residential usage.

The third source is the American Community Survey (ACS).16 This dataset provides annual

estimates of demographic data based on the latest U.S. census. I extracted relevant demographic

variables at the state level, such as median income (inflation-adjusted), median age, number of

housing units, number of residential broadband subscribers, number of satellite subscribers, and

the number of housing units without broadband.
14https://www.fcc.gov/economics-analytics/industry-analysis-division/urban-rate-survey-data-resources
15https://broadband477map.fcc.gov/#/data-download
16https://www.census.gov/programs-surveys/acs
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The fourth source is the U.S TIGER/Line Shapefiles17, from which I extracted the total area of

each state to compute the population density.

Finally, I collected the amount of subsidy from the BEAD program allocated to states from the

U.S. government website.18

All the five data sources were assembled to construct a unique dataset. To account for inflation,

prices were adjusted to 2023 dollars using the Consumer Price Index (CPI) provided by the Bureau

of Labor Statistics (BLS). This study faces three notable limitations worth mentioning. First, the

FCC does not report the number of subscribers who choose each plan. Consequently, the market

share for each plan is not readily available. Second, although the URS data were collected at the

census-tract level, the publicly available dataset does not identify the specific census tracts in which

each ISP operates. This lack of granularity makes it challenging to conduct detailed analyses at a

more localized level. Third, the URS dataset was derived only from a sample of urban census tracts,

thus limiting its representativeness to all areas, including rural regions.

Several adjustments have been made to overcome these limitations. First, owing to the lack

of market share data, I assume that plan availability (measured by the weight in the URS) is pro-

portional to the number of residential broadband subscribers reported in the ACS. This assumption

allowed me to approximate the market share and demand by combining these weights and sub-

scriber counts. Second, to address the lack of census tract identifiers, I aggregated the data at the

state level to create a feasible unit of analysis. Third, although the URS is based only on a sam-

ple of urban census tracts, it serves as an official benchmark for federal policies and programmes

nationwide. It is worth emphasizing that URS prices are used as reference points to ensure that

consumers in areas receiving government intervention are charged reasonable prices. Therefore,

using URS data to represent national trends is not a major concern. For comparison, the Bureau of

Labor Statistics (BLS) relies on data from urban census tracts or blocks to compute CPI and related

metrics, which are widely used as proxies for national economic indicators.

The final dataset is structured at the market-provider-product level and consists of 19 providers,

with providers holding a market share of less than 1% aggregated into a single group referred to as

“other providers”.19 Providers can offer different product technologies, such as DSL, fixed wire-

17https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
18https://www.ntia.gov/funding-programs/internet-all
19The market definition in this analysis is based on a combination of the state and year.
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less, cable modem, or fiber. As a result, the consumer choice set consists of available technologies

and an outside option, which includes non-broadband alternatives, such as no subscription, wire-

line, or cell phone services.

Table 1: Observed Market Shares

Products Aggregate Providers

DSL Fixed Wireless Cable Fiber Outside good All Top 19 Other All Products

0.155 0.024 0.415 0.139 0.268 0.617 0.115 1.000

Note: All Products’ Column represents the sum of all the products’ market shares or sum of the providers (all 19), Other, and the
Outside good market shares.

Table 1 presents the observed market from the data and shows that all 19 providers account for

61.7% of the total market share. The remaining providers, each with less than 1% market share,

collectively account for 11.5% of the total market share. Finally, outside goods account for 26.8%

of the total market share.

Table 2: Summary Statistics

Mean Std. Dev Min Max Observation

A. Endogenous variables

Price (2023 dollar) 89.62 29.31 36.97 244.71 2595

Subscriber Count 378,671.70 621,350.10 80.83 7,018,170 2595

Market size 4,070,837 3,705,298 269,469 14,800,000 2595

B. Plan characteristics

Download speed (Mbps) 395.01 1130.52 0.25 22254.17 2595

Upload speed (Mbps) 265.71 1057.75 0.13 10,000 2595

Plan with allowance (%) 0.65 0.44 0.00 1.00 2595

Plan with high speed (%) 0.77 0.42 0.00 1.00 2595

C. Market level variables

Median income 63,667 14,402.13 18,626 108,210 494

Median age 38.68 2.40 30.5 45.10 494

Housing units density 85.09 300.38 0.21 2318.94 494

Herfindahl–Hirschman Index (in %) 25.681 14.123 1.597 70.770 494

Table 2 presents descriptive statistics of the main URS variables used to estimate the structural

model. Panels A, B, and C show that there is a lot of variability in the main endogenous vari-

ables, product characteristics variables, and exogenous market-level variables. Here, market size is
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defined as the number of housing units, as defined in the U.S. Census.

I supplement the data described in Table 2 with the FCC deployment data to build the pool

of products. The full dataset consists of 6,369 observations structured at the state-year-provider-

product level. A product is considered to be in the market if it has an associated price charged to

consumers. Conversely, if no price is charged, then the product is treated as a potential product that

can be introduced into the market. This distinction is based on the nature of FCC deployment data,

which consists of advertised products. In this dataset, ISPs report the maximum download and

upload speeds for each product offered in a given census block. However, not all products reported

by ISPs in this dataset are available in the market.

Using the institutional context and established data, I outline the empirical strategy. I begin with

a difference-in-differences approach to assess the effects of subsidies on prices and service quality.

To explore counterfactual policy scenarios, I estimate a structural model of broadband demand and

supply with endogenous entry and product offerings.

3 Empirical Model

The analysis begins with a difference-in-differences design that exploits cross-state variation in

subsidy allocation intensity, providing reduced-form evidence of how state-level exposure to federal

broadband funding affects prices and service quality following the IIJA. To go beyond reduced-

form effects, I complement this approach with a structural model that sheds light on the underlying

behavioral mechanisms that drive the observed difference-in-differences results.

3.1 Difference-in-Differences Design with Continuous Treatment

In this section, I estimate a difference-in-differences model that exploits the continuous varia-

tion in subsidy intensity across states. By design, all states receive some level of subsidy (e.g.,

all treated units), so identification comes from differences in treatment intensity rather than from

treated–control comparisons. Figure 1 illustrates the institutional mechanism underlying the sub-

sidy allocation. Panel A shows the subsidy allocations, while Panel B displays the number of

underserved areas as reported in the 2021 BEAD Report (based on 2020 FCC coverage data). The

two panels reveal a mechanical link in the allocation rule: states with more underserved areas re-
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ceive larger allocations. Figure 2 further highlights the strong correlation between subsidy intensity

and the number of underserved areas.

Figure 1: Subsidy Allocation and Underserved Areas

(a) Panel A: Subsidy Allocation (2021) (b) Panel B: Number of underserved areas

Note: (1) This figure shows the per-capita BEAD subsidy allocations (Panel A) and number of
underserved census blocks (Panel B). States with more underserved areas receive larger
allocations, reflecting the mechanical link in the BEAD allocation formula. (2) The number of
underserved areas is reported in the 2021 BEAD Report, based on 2020 FCC coverage data.

Figure 2: Relationship between Subsidy Intensity and Underserved Areas

R² = 0.958
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Note: This figure shows that nearly 96% of the total variation in subsidy allocations is explained
by the pre-determined number of underserved areas, underscoring the importance of controlling
for this variable.

This motivates the use of subsidy intensity as a continuous treatment variable but also highlights
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its endogeneity. Importantly, BEAD allocations are determined and announced at the state level,

whereas firm-level subgrants and network deployment occur with a lag. Consequently, the difference-

in-differences design should be interpreted as estimating the exposure effect of the BEAD alloca-

tion intensity at the state level. Throughout the paper, the difference-in-differences estimates are

therefore interpreted as intention-to-treat (ITT) effects, capturing the impact of exposure to sub-

sidy allocations rather than the effects of completed network deployment or realized infrastructure

build-out. In particular, the estimates reflect how outcomes evolve differentially across states re-

ceiving higher per-capita allocations following the policy announcement through channels such as

anticipation effects, state-level planning and coordination, complementary investments, and early

adjustments by market participants.20

Subsidy allocations are mechanically linked to the number of underserved areas and are there-

fore not randomly assigned. Moreover, they reflect underlying structural characteristics such as

housing unit density, rurality, and median income (see Figure 9 in Appendix D). To mitigate con-

founding and allow for differential post-policy trends correlated with pre-existing state character-

istics, I control for pre-intervention covariates interacted with event time.

The specification of the difference-in-differences design in the continuous treatment is written

as follows21:

yit = α +
2023

∑
j=2016
j ̸=2020

β j log
(

subsidyi
popi

)
1{t = j}+

2023

∑
j=2016
j ̸=2020

θ
′
jXi 1{t = j}+λi +λrt + εit . (1)

The variable yit denotes the outcome of interest, defined as the average broadband price or speed

in gigabits per second (Gbps) in state i at year t. The term λi captures state fixed effects, which

control for unobserved, time-invariant differences across states, whereas λrt represents region-year

fixed effects, which absorb shocks that are common to states within a region in a given year.22 The

variable subsidyi denotes the subsidy allocated to state i at t = 2021 and popi is the population

20Several studies examine firms’ anticipatory behavior in the broadband market in response to policy exposure; see,
for example, Wilson (2025) and Bourreau et al. (2020).

21Another possible specification is proposed by Callaway et al. (2024) (see Remark 3.1). However, in my setting, the
limited number of units (states) prevents me from comparing those receiving low subsidies (below the 10th percentile)
with those receiving high subsidies (above the 90th percentile).With a small number of states, it is not possible to rely
on asymptotic approximations for valid inference under this specification.

22The analysis defines the usual five regions based on state-level groupings: Northeast, Midwest, South, West, and a
standalone category for Rhode Island.
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size in state i. The notation 1{·} denotes the usual indicator function. The coefficients β j are the

parameters of interest, capturing the average differential change in outcome yit associated with a

one-unit increase in log per capita subsidy allocation relative to 2020. The β j before j = 2020

are falsification tests that capture the relationship between the subsidy allocation intensity and the

outcomes before the subsidy program occurred. Their pattern and statistical significance are a

direct test of the common trends assumption. Following standard practice, I omit period t = 2020,

the year immediately preceding policy implementation, from the set of indicators to serve as the

baseline. The vector Xi includes pre-intervention (t = 2020) state-level covariates, such as the

number of underserved areas and the share of workers that work remotely to account for differential

exposure to COVID-19 and related shocks. The associated coefficients θ j are allowed to vary

flexibly over time to account for differential post-policy trends correlated with pre-existing state

characteristics Xi. Finally, εit is the idiosyncratic error term that captures unobserved factors that

affect the outcome.23

The identifying assumption of treatment effects βt in (1) relies on a conditional parallel trends

assumption. Specifically, in the absence of exposure to the IIJA program, states with different

subsidy intensities would have followed parallel outcome trajectories over time, conditional on

pre-policy characteristics Xi and included fixed effects. In addition, I assume that conditional on

the observed pre-intervention characteristics and fixed effects, the treatment intensity is mean-

independent of unobserved shocks that affect the outcome:

E[εit | subsidyi/popi,Xi,λi, t,λrt ] = 0. (2)

The assumption defined in (2) implies that after conditioning for pre-treatment covariates, state

fixed effects, and region-by-time fixed effects, cross-state variation in per-capita subsidy alloca-

tions is conditionally exogenous to the contemporaneous unobserved determinants of the outcome.

Together, these assumptions allow the coefficients βt to be interpreted as causal differences in the

post-allocation outcomes associated with differential exposure to BEAD funding.

The top-row panel of Figure 3 displays the trends in average broadband prices (in 2023 dollars)

and service quality measured in gigabits per second (Gbps). While prices fluctuate between $82 and

23As a robustness check, I also report the difference-in-differences main results by only controlling by region fixed-
effect and with no covariates Xi in Figure 10 in Appendix D.
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$95 over time, the service quality increases steadily. The sharp increase in Gbps from 2022 to 2023

coincides with a notable jump in product quality, suggesting substantial technological- or policy-

driven improvements. The second-row panels show the results of the difference-in-differences

regression specified in equation (1). Standard errors are clustered at the state level to account for

serial correlation within states.

Figure 3: Difference-in-Differences Estimates
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Note: (1) The second row of this figure reports the estimates and 95% CIs for βt from (1).
Standard errors are clustered at the state level. 2020 is omitted as the reference year; (2)The
first two rows of the figure display the data: the average price (in 2023 dollars) and average
speed (in gigabits per second). The last row shows the corresponding estimates generated by
the model in (1).

The coefficients for the pre-event periods are close to zero and not statistically significant, sup-

porting the parallel trend assumption. The results suggest that states that are more exposed to

subsidy allocations experience differential post-2021 changes in prices and service quality. How-

ever, the effects on average prices become statistically insignificant at t = 2023, consistent with

the gradual pass-through of infrastructure investments and rising marginal costs documented in the

structural analysis. It is worth noting that excluding Xi from specification (1) yields estimates that

are nearly identical to the baseline results (Figure 3 versus Appendix D). This similarity suggests

that the allocation rule does not mechanically drive the estimated DiD effects. While controlling
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for underserved areas is conceptually important, the results indicate that state and region–year fixed

effects absorb most of the cross-state variation correlated with this variable.

To quantify the aggregate effect of subsidy allocations on national broadband prices and quality,

I construct counterfactual price and quality paths representing outcomes that would have prevailed

in the absence of subsidy exposure, starting in 2021. Specifically, for each year t, the counterfactual

outcome yc f
t is defined as

yc f
t = yt −βt × log

(
subsidy

pop

)
, (3)

where yt denotes the observed national average price or broadband quality (measured in Gbps), βt is

the estimated treatment effect coefficient for year t, and log
(

subsidy
pop

)
denotes the cross-state average

of the log per-capita subsidy allocation. Intuitively, yc f
t corresponds to the observed outcome net of

the component attributable to exposure to the subsidy program.

Figure 4 reports the observed and counterfactual national average broadband quality and aver-

age price from 2014 to 2023. These counterfactual paths should be interpreted as exposure-based

benchmarks rather than as the full equilibrium outcomes absent network deployment. Prior to 2021,

the observed and counterfactual trends closely overlap and are statistically indistinguishable within

the 95% confidence intervals, consistent with the common pre-trends documented in Figure 3.

Figure 4: Observed and Counterfactual Annual Outcomes
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Note: The figure displays observed annual average prices and broadband quality (Gbps) and
the corresponding counterfactual outcomes absent subsidy allocations. Counterfactuals are
constructed using the estimated βt from (1) and the average log per-capita subsidy allocation
across states. The gray shaded region denotes the 95% confidence region for yc f

t .
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Beginning in 2021, the counterfactual broadband quality path lies below the observed trajectory,

which is consistent with the interpretation that higher subsidy exposure contributes to improve-

ments in broadband quality. Conversely, the counterfactual price path exceeds the observed price

trajectory from 2021 onward, indicating a reduction in average prices following exposure to higher

subsidy intensity.

The difference-in-differences reveals encouraging reduced-form patterns: broadband service

quality improves and prices decline more rapidly in states with higher BEAD allocation intensity

following the IIJA. However, while informative, these trends do not allow me to distinguish be-

tween the effects of supply- and demand-side programs, nor do they capture the underlying strate-

gic behavior of firms that shape these outcomes. Crucially, they provide limited guidance for policy

design, particularly in answering questions such as how the market would respond to a larger or

smaller subsidy? What is the optimal subsidy level? How do price, entry, and product variety

evolve under alternative scenarios? To address these questions, I estimate a structural model for

the broadband industry that explicitly incorporates consumer demand and firms’ endogenous en-

try and product decisions. This framework complements the difference-in-differences design by

allowing for counterfactual simulations that quantify how subsidies reshape the market structure,

cost pass-through, and welfare outcomes. It provides a unified lens to evaluate both the behavioral

mechanisms at play and the fiscal efficiency of alternative subsidy designs.

3.2 Structural Model

3.2.1 Model Setup

Consider a framework in which the markets (defined as a combination of state and year) and firms

(or providers) are indexed by i ∈N and f ∈F , respectively. The products in market i are denoted

by j ∈ Ji with the cardinalities of the markets, firms, and products represented by N, F , and Ji,

respectively.

Each product is produced by a single firm. The set of products offered by firm f in market i is

denoted by J f i, and the total set of products available in market i is Ji =
⋃

f∈F J f i.

In each market i, firm f decides whether to offer product j by setting decision variable Yji ∈ {0,1},

where Yji = 1 if product j is offered and Yji = 0 if product j is not offered.
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The full portfolio of products available in market i is represented as Yi ∈ {0,1}Ji . Similarly, the

portfolio offered by firm f in market i is denoted by Y f i, where Y− f i represents the portfolio of

competing firms.

Let r f i(Yi) denote the variable profit of firm f from portfolio Yi in market i. The fixed cost of

introducing product j to market i is denoted FC ji. For portfolio Y f i offered by firm f in market i,

the total fixed cost incurred by firm is given by

FC f i(Yf i) = ∑
j∈J f i

Yji ·FC ji.

Based on the available information I f , each firm f chooses its product portfolio Yf i by solving the

following optimization problem:

max
Y f i∈Y f i

E
[
r f i
(
Yf i,Y− f i

)
−FC f i

(
Yf i
)
|I f
]

(4)

where, Y f i =
{

Yf i = (Yji) j∈J f i | Yji ∈ {0,1}
}

and Y− f i =
{

Y− f i = (Yji) j∈J− f i | Y ji ∈ {0,1}
}
.

Optimization problem (4) can be solved using a two-stage game. In the first stage, firms decide

which products to offer; in the second stage, they set prices as presented in Figure 5.

Figure 5: Timeline of the model

Firms learn

fixed-cost shocks

Firms choose

their product

portfolio & pay

fixed costs

Firms learn demand
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variable costs
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First stage: Product offering decision

Each firm f is endowed with a set of products J f . Firms observe the characteristics of these

products, as well as the product, market, and year fixed effects, and the fixed costs associated with

all potential product offerings. Additionally, firms have knowledge of the distribution of demand

shocks (ξ ) and marginal cost shocks (η), although these are unobservable to econometricians.
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In the estimation framework, I nonparametrically recover the empirical distributions of ξ and η .

Based on this information, firms determine their product offerings by solving the following opti-

mization problem,

max
Y f i∈Y f i

E(ξ ,η)

[
r f i
(
Yf i,Y− f i

)
| I f

]
−FC f i

(
Y f i
)
. (5)

Second stage: Pricing competition

At this stage, demand shocks ξ and marginal cost shock η are realized, and firms observe the

realization of these shocks and set prices in a Nash-Bertrand in a complete information game.

Typically, firms choose prices by solving the following optimization problem,

max
{p ji, j∈J f i}

r f i
(
Y f i,Y− f i

)
. (6)

The fact that firms know only the distribution of demand and marginal cost shocks in the first

stage and the realization in the second stage after they commit to the product offering decision

is referred to as the timing assumption. In the broadband industry, the timing assumption can be

justified by considering the nature of the technology implementation and its associated timelines.

Broadband deployment typically requires a significant upfront investment in infrastructure, such as

laying fiber-optic cables, setting up data centers, or configuring wireless networks. These processes

often involve long planning and execution phases, regulatory approval, and coordination with local

governments, making the decision to enter a market or to roll out specific services a long-term

commitment.24

I estimate the structural model in two stages. Estimating such a model requires back out of

the demand parameters, marginal, and fixed costs associated with offering broadband services.

This section describes how I estimate each part sequentially, starting with consumer demand and

moving backward to firm decisions. I also address key econometric challenges, such as dealing

with multiple equilibria in firms’ entry and product choices.

24This timing assumption has been used in several studies. Examples include Fan and Yang (2024) for the brewery
industry, Eizenberg (2014) in the personal computer industry, and Hidalgo (2024) for the broadband industry.
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4 Estimation

This section presents the strategies used to estimate the model. First, I solve the second stage of

the analysis following the methodology outlined in Berry (1994).25 Next, I proceed to the first

stage, where I construct moment inequalities leading to bounds of the parameters of interest using

the approach proposed by Fan and Yang (2024). For inference in models defined by moment

inequalities, I rely on the techniques developed by Chernozhukov et al. (2019).

4.1 Demand

I follow Berry (1994) and assume that the indirect utility of household h from choosing product

j ∈ Ji in market i ∈ N takes the following form:

Uhi j = δ ji +νhig +(1−ρ)εh ji, (7)

where g ∈ G is the number of product groups, δ ji is the utility from the observed characteristics

of product j and εh ji is the idiosyncratic utility shock. The term δ ji is further specified as δ ji =

X ′
jiβ +α p ji+ξ ji, where X ji =

(
X jki
)K

k=1 is a K-dimensional vector of observable characteristics of

product j,26, p ji is the price of product j, ξ ji is an unobserved (by the econometrician) characteristic

of product j, (α,β ) are K+1 taste parameters, and νhig is unobserved (by the econometrician) and

common to all products in group g is a group-specific variable whose distribution function depends

on the within-group taste correlation parameter 0 ≤ ρ < 1.

Following Ciliberto et al. (2021) and Aguirregabiria et al. (2024), I consider a nested logit

model with two nests: one with all inside goods and the other with the outside good. Let d jg be a

dummy variable equal to 1 if j ∈ Ji and 0 otherwise. I can then rewrite (7) as follows:

25This paper departs from Fan and Yang (2024), who employ a random-coefficients demand model. While such
models allow for richer substitution patterns, they may generate non-unique pricing equilibria in multiproduct settings
(Nocke and Schutz, 2018), complicating welfare and entry counterfactuals. I therefore follow Berry (1994), which
delivers a unique closed-form pricing solution and ensures a stable mapping from demand primitives to prices. This
tractability is essential for evaluating firms’ endogenous product offerings and entry decisions. I nonetheless rely on
Fan and Yang (2024)’s framework to recover fixed-cost parameters in the entry stage.

26In this paper, I consider the download speed, upload speed, data allowance, and high/low speed product
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Uhi j = δ ji + ∑
g∈G

d jgνhig +(1−ρ)εh ji, (8)

Let s̃ ji denote the observed market share of product j in market i, and let s̃ j/g denote the ob-

served market share of product j as a fraction of the total market share of group g.

log
(
s̃ ji
)
− log(s̃i0) = X ′

jiβ +α p ji +ρ log
(
s̃ j/g
)
+ξ ji. (9)

In the model defined in (9), p ji and log
(
s̃ j/g
)

are endogenous variables. Price p ji is endoge-

nous because it is influenced by factors correlated with demand shock ξ ji, often interpreted as the

unobserved quality of product j. Endogeneity of log
(
s̃ j/g
)

arises because of simultaneity issues.

To address these endogeneity issues, I rely on the instrumental variables approach proposed by

Berry (1994) for p ji, employing instruments such as27

1
Ji −1 ∑

l∈Ji,l ̸= j
Xlki, ∀k = 1, · · · ,K

average characteristics of all exogenous products in market i (excluding product j), including up-

stream and downstream speed and high-speed indicators. The intuition behind using these instru-

ments is twofold. First, the characteristics of rival products influence their pricing decisions, which

in turn affect the price of product j, ensuring instrument relevance. Second, these characteristics

are assumed to not directly impact consumers’ utility from product j except through their effect on

prices, thus satisfying the exclusion restriction. For log
(
s̃ j/g
)
, I rely on the instrument proposed

by Aguirregabiria et al. (2024), using the number of all products in market i (excluding product j)

and the previous set of instruments used for price endogeneity. Furthermore, I report the first-stage

instrumental variable regressions in Appendix E.1, the results of which justify the strength of the

instruments used.28

The estimation of the model in (9) is performed using a two-stage least-squares (2SLS) ap-

27I am fully aware that other types of instruments have been proposed in the literature, as well as the potential
weakness of the BLP-type instrument, especially when Ji is sufficiently large. However, in my dataset, the number of
products Ji is approximately nine on average, which is relatively small for asymptotics to apply.

28The first-stage results (Table 12) confirm the relevance of the instruments. The F-statistics for joint instrument
significance are 40.9 for the nest equation and 28.2 for the price equation, both well above the conventional threshold
of 10, indicating that BLP-type instruments are strong in this context.
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proach. In the first stage, I regress the endogenous variables on the instruments and exogenous

characteristics, controlling for state and provider fixed effects. In the second stage, I estimate the

model in (9), addressing the endogeneity problem while controlling for state, year, and product

fixed effects.

The estimation of the model in (9) allows me to recover the empirical distribution of demand

shocks ξ ji. Moreover, it allows for the computation of consumer welfare CSi in market i, which is

written as

CSi =− 1
α
· log

1+

(
∑

j∈Ji

exp
(

δ ji

1−ρ

))1−ρ
 ·Mi · si (pi,Xi,ξi) , (10)

where

si (pi,Xi,ξi) =
exp
(
δ ji/(1−ρ)

)
(Dg)

ρ
(

∑g′
(
Dg′
)1−ρ

) , (11)

where Dg = ∑ j∈Jg exp
(
δ ji/(1−ρ)

)
, δ ji = X ′

jiβ +α p ji + ξ ji, and Jg set of products belonging

to group g.

4.2 Oligopoly Price Competition

The variable profit r f i of firm j in market i is given by,

r f i = ∑
j∈J f

(
p ji −mc ji

)
MiY jis j (pi,Xi,ξi) , (12)

where mc ji is the marginal cost of product j, s j (pi,Yi,Xi,ξi) is the market share of product j in

market i, Mi is the market size defined as the number of housing units in market i. I follow the

literature and assume that firms set prices according to the Bertrand-Nash equilibrium in a complete

information game.

The first order conditions resulting from the optimization problem are written as,

s j (pi,Xi,ξi)+ ∑
j∈J f i

(
p ji −mc ji

) ∂ s j (pi,Xi,ξi)

∂ p ji
= 0, (13)

To solve (13), I define S jr =−∂ sr (pi,Xi,ξi)/∂ p ji, j,r = 1, ...,Ji.
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Ω
∗
jr =

 1 if ∃ f : {r, j} ⊆ J f i

0 otherwise,

and Ω is Ji × Ji matrix with Ω jr = Ω∗
jr ⊙S jr, where ⊙ is the Hadamard product.

Hence, the first order conditions in (13) become

pi −mci = Ω
−1s j (pi,Xi,ξi) , (14)

The marginal cost mci is nonparametrically recovered from (14), and is further specified as follows:

log
(
mc ji

)
= X ′

jiγ +η ji, (15)

where η ji denotes the marginal cost shock.

I estimate the model in (15) using ordinary least squares (OLS) and control for state, year, and

product fixed effects. Subsequently, I recover the empirical distribution of marginal cost shocks.

With these in hand, along with demand shocks, I estimate the expected variable profits and coun-

terfactuals resulting from any type of product-offering configuration.

4.3 Product Offerings

In this section, I consider a simultaneous, static, and discrete choice game of complete information.

This setup follows the seminal contributions of Bresnahan and Reiss (1991) and Berry (1992).29

The primary objective is to recover the fixed costs associated with product-offering decisions. To

estimate the fixed costs, the following specification is adopted:

FC ji =Wiθ +σζ ζ ji, ζ ji
d−→ N (0,1) , (16)

where θ and σζ are the parameters of interest to be estimated, ζ ji is the unobserved market and

product heterogeneity affecting fixed costs, and Wi consists of fixed cost shifters, which are ex-

planatory variables that influence fixed costs. In this case, Wi includes dummy variables indicating

whether a market falls into a specific category (small, medium, or large). These dummies help

29These models have been widely adopted in the literature (Aradillas-López, 2020).
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account for systematic differences in fixed costs across different market sizes.

Estimating this type of model poses notable challenges because of the presence of multiple

equilibria. Specifically, for a given set of parameters and unobserved fixed-cost shifters, the model

can predict multiple equilibria, thus rendering it incomplete. The existing literature offers three

main approaches to address this issue. The first aggregates observed data to ensure that the model

predicts a unique equilibrium (Bresnahan and Reiss, 1991; Berry, 1992). The previous insight ap-

plies only to models with two players making binary decisions and cannot be readily extended to

the more complex setting considered in this study. The second approach imposes an equilibrium

selection mechanism (Bjorn and Vuong, 1984; Bajari et al., 2010), which typically adds another

layer of complexity to the model, as it requires estimating the selection rule, potentially introduc-

ing a risk of misspecification. The third approach avoids imposing restrictions on the equilibrium

selection mechanism and relies on tools from moment inequality literature to estimate the param-

eters of interest.30 In this study, I adopt the latter approach, as it provides a more robust solution

than other methods. Specifically, I leverage the recent method proposed by Fan and Yang (2024),

which offers an efficient way to compute bounds. of parameter. This framework is particularly well

suited for the present study, as it accommodates a large number of players and products, which is

an essential feature of the U.S. broadband industry.

Assumption 1. Any observed decision Yji is not a dominated strategy for all products j ∈ Ji.

In this section, I closely follow Fan and Yang (2024) to illustrate the construction of the bounds of

the parameters of interest.31 Under Assumption 1,

Pr
(
Yji = 1 is dominant

)
≤ Pr

(
Yji = 1

)
≤ Pr

(
Yji = 1 is not dominated

)
(17)

I denote Y− ji = (Yki,k ∈ Ji : k ̸= j). To simplify the notation, the minimum and maximum values

30Tamer (2003), Ciliberto and Tamer (2009), Ciliberto et al. (2021), Fan and Yang (2024), Wollmann (2018), Eizen-
berg (2014), and Pakes et al. (2015), among other.

31For a detailed exposition of the heuristic results underlying this section, readers can refer to Fan and Yang (2024).
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are taken over the elements Y− ji.

Yji = 1 is dominant ⇔ ζ ji < min
Y− ji

{
r f i
(
Yji = 1,Y− ji,X ji

)
− r f i

(
Yji = 0,Y− ji,X ji

)}
−FC ji,

Yji = 1 is not dominated ⇔ ζ ji < max
Y− ji

{
r f i
(
Yji = 1,Y− ji,X ji

)
− r f i

(
Yji = 0,Y− ji,X ji

)}
−FC ji.

Given a set of observed covariates X ji and the change in firm f variable profit as Yji turns from zero

to one is defined as,

∆ j
(
Y− ji,X ji

)
= r f i

(
Yji = 1,Y− ji,X ji

)
− r f i

(
Yji = 0,Y− ji,X ji

)
. (18)

Hence,

Fζ

(
min
Y− ji

{∆ j
(
Y− ji,X ji

)
}−FC ji

)
≤ Pr

(
Yji = 1|X ji,Wji

)
,

Pr
(
Y ji = 1|X ji,Wji

)
≤ Fζ

(
max
Y− ji

{∆ j
(
Y− ji,X ji

)
}−FC ji

)
.

Assume that the presence of rivals reduces a firm’s profit. Then,

∆ j
(
X ji
)
= min

Y− ji
∆ j
(
Y− ji,X ji

)
≈ ∆ j

(
1, ...1,X ji

)
∆ j
(
X ji
)
= max

Y− ji
∆ j
(
Y− ji,X ji

)
≈ ∆ j

(
0, ...0,X ji

)
.

(19)

Finally, the bounds of the parameters can be derived as follows,

Fζ

(
∆ j
(
X ji
)
−FC ji

)
≤ Pr

(
Yji = 1|X ji,Wji

)
≤ Fζ

(
∆ j
(
X ji
)
−FC ji

)
, (20)

L
(
Yji,∆ j

(
X ji
)
,Wi,θ ,σζ

)
= Fζ

(
∆ j
(
X ji
)
−FC ji

)
−1
(
Yji = 1

)
,

H
(
Yji,∆ j

(
X ji
)
,Wi,θ ,σζ

)
= 1

(
Yji = 1

)
−Fζ

(
∆ j
(
X ji
)
−FC ji

)
,

(21)

E
[
L
(
Yji,∆ j

(
X ji
)
,Wi,θ ,σζ

)
|X ji,Wi

]
≤ 0,

E
[
H
(
Yji,∆ j

(
X ji
)
,Wi,θ ,σζ

)
|X ji,Wi

]
≤ 0.

(22)
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Let g(k) (·) ,k = 1, ...,K be non-negative functions of X ji and Wi. Thus, (22) can be transformed

from conditional to unconditional expectations.

E
[
L
(
Yji,∆ j

(
X ji
)
,Wi,θ ,σζ

)
g(k)
(
Wi,X ji

)]
≤ 0,

E
[
H
(
Yji,∆ j

(
X ji
)
,Wi,θ ,σζ

)
g(k)
(
Wi,X ji

)]
≤ 0.

(23)

I average (23) across all potential products in each market to mitigate any correlations between the

decisions of firms operating in the same market. Consequently, the asymptotic is driven by the

number of markets rather than a combination of the number of products and markets.

E

[
1
Ji

∑
j∈Ji

L
(
Y ji,∆ j

(
X ji
)
,Wi,θ ,σζ

)
g(k)
(
Wi,X ji

)]
≤ 0,

E

[
1
Ji

∑
j∈Ji

H
(
Y ji,∆ j

(
X ji
)
,Wi,θ ,σζ

)
g(k)
(
Wi,X ji

)]
≤ 0.

(24)

At this stage, the function g(k)(·), along with the cutoffs ∆ j(X ji) and ∆ j(X ji), are essential for

computing these moment inequalities. In what follows, I discuss how I defined the function g(k)(·)

and the cutoffs ∆ j(X ji) and ∆ j(X ji).

The computation of the cutoffs ∆ j
(
X ji
)

and ∆ j
(
X ji
)

is achieved under three distinct scenarios32:

(i) only a single product j is in the market, (ii) all products are in the market, and (iii) a given

product j is removed from the market while keeping all other products in the market. Scenario (i)

allows for the computation of ∆ j
(
X ji
)
, whereas scenarios (ii) and (iii) allow for the computation

of ∆ j
(
X ji
)
. To compute these counterfactual scenarios, I rely on the algorithm provided in Canay

et al. (2023)33, which I restate in Appendix F.1.

To construct the set G of functions g(k)(·), I discretize ∆ j
(
X ji
)
, ∆ j
(
X ji
)

and the ratio ∆ j
(
X ji
)
/∆ j

(
X ji
)

were constructed using the 25th, 50th, and 75th percentiles, respectively. These percentiles were

selected under the assumption that they provide informative summaries of X ji. This parsimonious

discretization is used to prevent excessive occurrence of zeros in the moment inequalities in (24).

Set G consists of the interactions between these discretized percentiles, market category Wi, and

32I normalize the profit to zero when none of the products for a given firm f are in the market.
33A similar algorithm was used by Ciliberto et al. (2021)
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their interactions.34

The variable profit is measured in monetary units (dollars), allowing the fixed cost parameters θ

and σζ to be separately identified directly in dollars rather than only up to the scale factor σζ as is

common in frameworks in which variable profit is specified in a semi-reduced form (e.g., Ciliberto

et al. (2021)). Identifying these parameters in dollars enables a meaningful cost–benefit analysis

(see Section 11). The following section explains how this identification was achieved in this paper.

4.3.1 Identification

The identification of the fixed-cost parameters θ and σζ relies on the exogenous variation in prod-

uct characteristics and market sizes X ji and Wi, combined with the equilibrium structure of firms’

product-portfolio choices. Parameter θ , which captures how fixed costs vary with market size,

is identified from the differences in entry patterns across market size categories. These size cate-

gories generate distinct moment inequalities (24) that link the observed entry outcomes to fixed-cost

heterogeneity. The variance parameter σζ governing the unobserved component of fixed costs is

partially identified using the entry-decision inequality in (6). The variation in the observed covari-

ates identifies the expected variable profits, whereas the observed equilibrium product portfolio Yi

further restricts σζ through the implied variance of the truncated normal distribution. Assumption

2 ensures that σζ is pinned down for estimation.

Assumption 2. The observed decision Yi is a pure-strategy equilibrium for all i ∈ N .

Proposition 1. Under Assumption 2, the variance σζ is partially identified via a truncated normal

distribution with mean Wiθ .

Proof: See Appendix C.

4.3.2 Inference

The moment inequalities in (24) form the basis of the inference procedure used to estimate the

parameters of interest θ and σζ . The identified set is defined as any combination of
(
θ ,σζ

)
that

34Similar functions was used by Fan and Yang (2024), Canay et al. (2023), Eizenberg (2014), Wollmann (2018),
among others.
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satisfies (24).

Θ0 =
{(

θ ,σζ

)
∈ Θ : E

[
m
(
X ji,Wi,θ ,σζ

)]
≤ 0
}
, (25)

where m is an R2|G |-valued function that stacks the functions inside expectations in (24). The infer-

ence procedure relies on the framework developed by Chernozhukov et al. (2019). This framework

enables the construction of confidence sets for points in the identified set that are uniformly con-

sistent in level over the relevant class of distributions of the observed data with a prespecified

probability of 1−α . Typically, this is performed by inverting the test for the following null hy-

pothesis:

Hθ : E
[
m
(
X ji,Wi,θ ,σζ

)]
≤ 0. (26)

Concretely, the resulting test (26) takes the following expression,

φn
(
θ ,σζ

)
= I
{

Tn
(
θ ,σζ

)
> cn

(
1−α,θ ,σζ

)}
, (27)

where cn
(
1−α,θ ,σζ

)
is the critical value, and the function Tn is the test statistic defined as fol-

lows:

Tn
(
θ ,σζ

)
= max

1≤l≤2|G |

√
nmn,l

(
θ ,σζ

)
σ̂n,l

(
θ ,σζ

) , (28)

where

mn,l
(
θ ,σζ

)
=

1
n ∑

i∈N

ml
(
X ji,Wi,θ ,σζ

)
, σ̂n,l

(
θ ,σζ

)
=

1
n ∑

i∈N

(
ml
(
X ji,Wi,θ ,σζ

)
−mn,l

(
θ ,σζ

))2
.

Finally, the confidence set consists of vectors of parameters that lie within the identified set and are

not rejected by the test statistic Tn defined in (28). That is, the confidence set Cn collects all points(
θ ,σζ

)
∈ Θ satisfying the following condition

Cn =
{(

θ ,σζ

)
∈ Θ : φn

(
θ ,σζ

)
= 0
}
. (29)

The computation of the confidence set Cn boils down to the computation of the test statistic Tn
(
θ ,σζ

)
(which is readily available) and the critical value cn

(
1−α,θ ,σζ

)
.

To compute the critical value, I follow the two-step procedure proposed by Chernozhukov et al.

(2019). Appendix H details the method and its implementation for the test statistic in (28). Finally, I
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construct the confidence set in (29) by performing a grid search over 10,000 points for the parameter

vector
(
θ ,σζ

)
I now present the empirical results of the estimated model, including demand elasticities,

markups, and the distribution of fixed costs across markets. These estimates serve as the basis

for the subsequent counterfactual policy simulations.

5 Empirical Results

5.1 Demand and Supply

Table 3 reports the estimation results of the demand system along with the marginal cost models.

The latter is derived from demand system estimation using the pricing competition model.

I provide two estimation results for demand: an OLS estimation, which does not consider price

endogeneity, and a 2SLS estimation, wherein I leverage the instrumental variables presented in

Section 4 to properly address price endogeneity while controlling for fixed effects. The marginal

cost model is estimated using OLS, and I also control for fixed effects.

The demand estimation shows that consumers dislike higher prices ceteris paribus. They tend

to prefer the downstream product under a certain cutoff, but dislike it when the downstream exceeds

this cutoff. This can be explained by the fact that consumers often prefer faster download speeds

up to a certain level, which satisfies typical usage requirements (e.g., streaming, browsing, and

gaming). Beyond this threshold, marginal utility diminishes because most consumers do not need

extreme speed, and they might perceive it as over-provisioning, which does not justify the additional

costs. Finally, consumers tend to dislike products that have allowance caps. Consumers often

view data caps or allowances as restrictive and inconvenient, particularly if they lead to overage

charges or reduced speeds after exceeding the cap. This perception can decrease the attractiveness

of capped plans compared with unlimited plans, even if they are priced similarly. The marginal cost

estimation shows that the downstream product and high-speed features strongly increase marginal

costs. However, upstream products tend to decrease marginal costs, which consumers typically

value less. High-speed broadband requires more advanced infrastructure, such as fiber optics, and

higher operational costs to maintain quality (e.g., reducing congestion). This finding is consistent

with the marginal cost increase for providers that offer higher speeds.
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Table 3: Estimation Results for Demand and Marginal Cost

Demand (log
(
s̃ j/s̃0

)
) Marginal Cost (log

(
cm j
)
)

OLS 2SLS OLS

Intercept 0.598∗∗∗ - -

(0.044)

Price (100 $) −0.259∗∗∗ −2.754∗∗∗ -

(0.041) (0.569)

Within Share (ρ) 0.921∗∗∗ 0.646∗∗∗ -

(0.006) (0.059)

Upstream (in Gbps) −0.549∗∗∗ 0.331 −0.296∗∗∗

(0.069) (0.276) (0.050)

Upstream2 0.012∗∗ −0.071∗∗∗ 0.008

(0.004) (0.013) (0.004)

Downstream (in Gbps) 0.900∗∗∗ 0.873∗ 0.566∗∗∗

(0.073) (0.355) (0.053)

Downstream2 −0.038∗∗∗ −0.040∗∗ −0.024

(0.003) (0.015) (0.002)

With Allowance −0.021 −0.266∗ −0.024

(0.024) (0.109) (0.018)

High Speed 0.295∗∗∗ 0.061 0.166∗∗∗

(0.028) (0.097) (0.0161)

Observation 2595 2595 2595

R2 0.928 0.687 0.558

State Fixed Effect No Yes Yes

Year Fixed Effect No Yes Yes

Provider × Product Fixed Effect No Yes Yes

% of Negative Implied Marginal Costs - - 0.000

5.1.1 Model Prediction and Elasticities

Table 4 presents the distribution of the observed and predicted market shares.

The model’s predicted mean market share is 0.139, which closely aligns with the observed

mean of 0.132, indicating that it accurately captures the central tendency of the data. However,

the predicted standard deviation (0.234) exceeds the observed standard deviation (0.178), suggest-

ing that the model accounted for considerable variability. The predicted maximum market share

(0.962) is slightly higher than the observed maximum (0.841). Overall, the predicted market share

is consistent with the observed data, reflecting the robustness of the model.

Table 5 summarizes the distribution of own-price elasticities derived from the demand system
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Table 4: Summary Statistics of Market Share

Mean Stand. Dev. Min Max

Data 0.132 0.178 0.000 0.841

Model prediction 0.139 0.234 0.000 0.962

estimation by income level and the overall sample. Income levels were categorized based on the

median income percentiles as follows: low-income states included those below the 33rd percentile,

medium-income states included those between the 33rd and 67th percentiles, and high-income

states included those above the 67th percentile.

Table 5: Own-Price Elasticities by Income Level

Mean Median Stand. Dev. Min Max

Low income -5.62 -5.49 3.17 -19.00 -0.10

Medium income -6.05 -5.88 2.90 -15.10 -0.14

High income -5.88 -5.73 2.84 -15.50 -0.06

Overall -5.85 -5.73 2.98 -19.04 -0.06

On average, a 1% increase in prices results in a 5.85% decrease in demand ceteris paribus.

Medium-income states tend to be more elastic to demand than are other income states.

These elasticities align with the findings for the broadband and related industries. For exam-

ple, Kearns (2024) reports elasticities by income level as follows: -4.73 for low-income, -4.46 for

middle-income, and -4.16 for high-income. Similarly, Goetz (2019) finds an average own-price

elasticity of -5.9. In the Colombian broadband market, Hidalgo (2024) estimates an average elas-

ticity of -4.6. In the cable industry, Crawford and Yurukoglu (2012) reports elasticities of -4.1 for

cable and -5.4 for satellite services.

5.1.2 Markups

Table 6 presents the markups obtained nonparametrically from the demand system estimation. The

table includes two types of markups: absolute markup, defined as the price charged to consumers

minus the marginal cost, and relative markup as a percentage, defined as the absolute markup

divided by the price charged to consumers.
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Table 6: Markups by Income Level

Absolute Markup Relative Markup (in %)

Mean Std. Dev. Min Max Mean Std. Dev. Min Max

Low income 1.78 1.12 0.45 9.20 2.22 1.57 0.25 13.00

Medium income 2.70 2.18 0.53 11.50 3.27 2.91 0.44 19.20

High income 2.38 1.68 0.55 9.58 2.96 2.33 0.36 16.70

Overall 2.29 1.76 0.46 11.46 2.82 2.38 0.25 19.21

Note: Income levels are categorized as in Table 5.

In terms of absolute markups, medium-income states face the highest average absolute markup

(2.70) and exhibit the highest variability (standard deviation: 2.18). In contrast, the low-income

group experiences the lowest average markup (1.78) with the smallest variability (standard devia-

tion: 1.12). Medium-income states also show the widest range of absolute markups, spanning from

0.53 to 11.50. For relative markups (percentages), the medium-income states again have the highest

average (3.27%) and largest variability (standard deviation: 2.91%). Low-income states report the

lowest mean relative markup (2.22%), whereas the maximum relative markup (19.20%) is observed

in medium-income states. Overall, the mean absolute markup across all states is 2.29%. The mean

relative markup is 2.82%. Medium-income states consistently face the highest markups, both ab-

solute and relative, and exhibit high variability. These findings suggest that pricing strategies may

disproportionately affect these states.

5.2 Product Offerings

Figure 6 presents the distribution of the cutoffs for the ratio of ∆ j
(
X ji
)

to ∆ j
(
X ji
)
, which defines

the moment inequalities in (24). The median of this ratio is approximately 0.183, and the distri-

bution exhibits substantial variability. This variability is crucial for computing meaningful bounds

on the fixed-cost estimates. It is important to note that these cutoffs are independent of the param-

eters; therefore, they are computed using the algorithm described in Appendix F.1 and saved for

subsequent use. Additionally, I define Wi as a vector of discrete variables that represents whether

the market is small, medium, or large. Similar to Fan and Yang (2024), this classification is based
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Figure 6: Distribution of the ratio of cutoffs
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on the quartiles of market size. Specifically, markets below the first quartile are classified as small,

those between the first and third quartiles as medium, and those above the third quartile as large.

Table 7 presents the projected 95% confidence intervals for the estimated fixed costs, measured

in millions of dollars and adjusted to 2023 dollars. In the broadband industry, typical fixed costs

include expenses such as salary, rent, and insurance. The table reports these fixed cost estimates by

market size category, along with the corresponding standard deviations for each category.35

Fixed costs increase with market size, highlighting the influence of market size on fixed-cost

structures. Small markets exhibit fixed costs ranging from $0.076 million to 1.254 million, likely

owing to reduced operational scales or less stringent infrastructure requirements. Medium-sized

markets, with a broader range of fixed costs ($0.970-3.006 million), indicate the intermediate levels

of investment necessary to serve a larger consumer base while managing moderate operational

complexities. Large markets, which have the highest fixed costs ($1.788-6.258 million), reflect the

need for significant infrastructure, distribution networks, and regulatory compliance to meet the

demands of a large consumer base.

35The fixed cost estimates are consistent with those presented in https://businessplan-templates.com/blogs/running-
costs/internet-service-provider
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Table 7: Estimates of Fixed Costs: Projected 95% Confidence Intervals

CI-LB CI-UB

Market size (θ)

Small market 0.490 1.254

Medium market 0.970 3.006

Large market 1.788 6.258

Market-size specific Stand. Dev
(
σζ

)
Small market 1.142 1.156

Medium market 2.156 2.995

Large market 0.354 4.990

Note: (1) All estimates are expressed in millions of USD, adjusted to 2023 prices; (2)
CI-LB and CI-UB represent the confidence interval lower and upper bound, respectively.

Table 7 also reports the standard deviations specific to market sizes. For small markets, the stan-

dard deviation is between $1.142 million and $1.156 million. Medium markets display a broader

range of standard deviations, from $2.156 million to $3.995 million, whereas large markets exhibit

standard deviations ranging from $0.354 million to $4.990 million. These variations indicate dif-

fering levels of fixed cost dispersion depending on market size, with larger markets experiencing

greater variability owing to the complexity of operations and scale.

6 Counterfactual Policy Analysis

Building on the estimated structural model, I conduct counterfactual policy simulations that align

with the stated objectives of federal initiatives. This section begins by outlining the design of the

counterfactual scenarios and explaining how they are incorporated into the model. I then present

the simulation results and discuss their implications for market outcomes and policy effectiveness.

6.1 Counterfactual Policy Designs

In this section, I present the policy frameworks of the two principal federal subsidy programs for

the broadband industry as delineated in the 2021 Biden Infrastructure Act36: the ACP and BEAD

Program. These initiatives address distinct aspects of the broadband market, demand, and supply,

and serve as the foundation for counterfactual simulations designed to evaluate their prospective

impact. The ACP seeks to enhance broadband affordability for households through direct subsidies,

36https://www.congress.gov/bill/117th-congress/house-bill/3684
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whereas the BEAD program aims to expand infrastructure deployment in underserved and unserved

areas. The overarching aim is to ensure reliable, affordable, and high-speed broadband access

across the United States.

Below, I present the institutional details of each program and explain how I incorporate them

into the model to evaluate their effects on equilibrium outcomes, such as prices, welfare,firm entry,

and product variety.

6.1.1 Affordable Connectivity Program

The ACP aimed to improve broadband affordability for low-income households by subsidizing the

demand. Eligible households receive a monthly discount of up to $30 on broadband bills. They are

also eligible for a one-time discount of up to $100 toward the purchase of a device, such as a laptop

or tablet, provided they contribute between $10 and $50 toward the cost.

A household qualifies for ACP if its income is at or below a certain threshold as defined in the

Federal Poverty Guidelines, or if a member of the household participates in certain federal or state

assistance programs, such as Medicaid, Federal Public Housing Assistance, or tribal-specific pro-

grams, or meets the eligibility criteria for a participating broadband provider’s low-income plan.37

To enroll, households must confirm their eligibility by contacting the FCC, either by phone or email.

Furthermore, participating providers must allow recipient households to apply the affordable con-

nectivity benefit to any of their internet service offerings and may not require the households to

submit to a credit check to apply the benefit. Such providers must also conduct public awareness

campaigns in service areas to highlight the existence of the program and the value and benefits of

broadband.

Given the data limitations, it is nearly impossible to account for all the components of program

eligibility. To replicate ACP in my model, I proceed as follows: First, I use the poverty rate in each

market as a proxy for ACP eligibility. Although this measure reflects a stricter income threshold,

it offers a conservative and consistent approximation of the share of low-income households at

market level. Second, I model subsidized prices through a price discrimination scheme that reduces

broadband prices by $30 for households below the poverty line, while keeping prices unchanged

for those above it. Then, I simulate the impact of these subsidized prices and assess their effects on

37https://docs.fcc.gov/public/attachments/DOC-380259A1.pdf
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various equilibrium outcomes.

6.1.2 Broadband Equity, Access, and Deployment Program

Supply-side interventions under the BEAD Program were introduced as part of the IIJA. The pri-

mary objective of the program is to incentivize broadband deployment, particularly in underserved

(lacking access to 100/20 Mbps) or unserved (lacking access to 25/3 Mbps) areas. The National

Telecommunications and Information Administration (NTIA) is responsible for classifying these

areas within each state and defining them as locations without adequate broadband access. Based

on this assessment, funds were allocated to the states in proportion to the number of underserved

and unserved locations. All U.S. states, the District of Columbia, Puerto Rico, American Samoa,

Guam, U.S. The Virgin Islands and Commonwealth of the Northern Mariana Islands are eligible

entities under the BEAD program and may be applied for funding.

An eligible entity is responsible for distributing funds to ISPs. Although the program’s design

has been finalized, its implementation is yet to begin.38 Applicants seeking BEAD program fund-

ing must have submitted a Letter of Intent and met the requirements outlined in the Qualification

Application. These include certifying compliance with applicable laws and demonstrating suffi-

cient financial and managerial capacities. BEAD program funds are disbursed on a reimbursement

basis, which means that subgrantees must initially cover project costs and submit appropriate doc-

umentation for reimbursement. The grant can cover up to 75% of eligible project costs, requiring a

minimum 25% match from the subgrantee.39

Eligible Entities are also encouraged to secure matching contributions exceeding 25% from

ISPs wherever feasible to reduce the federal share and extend the impact of BEAD program fund-

ing.

To replicate the expected impact of the program, I implement a counterfactual experiment that

simulates a subsidy scheme aimed at reducing firms’ fixed costs by 75%. I then look for the

optimal subsidy level via different cost-sharing rules, such as a reduction in fixed costs by 25% and

50%, among others. This experiment enables an evaluation of the potential effects of the BEAD

program on key equilibrium outcomes, including welfare, prices, and market structure.
38https://www.ntia.gov/funding-programs/internet-all/broadband-equity-access-and-deployment-bead-

program(timeline).
39See https://broadbandusa.ntia.doc.gov/sites/default/files (page 3).
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6.2 Counterfactual Policy Results

To conduct the counterfactual simulation, I follow the approach outlined in Fan and Yang (2024)

and draw fixed costs to ensure that the observed equilibrium constitutes a pure strategy Nash equi-

librium. This step is necessary to guarantee that the baseline is comparable across all the counter-

factual simulations. The procedure is implemented using Algorithm G.1. Once the fixed costs have

been determined, Algorithm G.2 is applied to construct the bounds on the objects of interest.40

Demand versus supply-side interventions

Table 8: Effects of Supply Side Subsidies on Outcomes

Baseline BEAD Change (%)

LB UB LB UB LB UB

Social Surplus 69.517 89.534 71.869 93.723 3.388 4.686

Producer Surplus 0.446 0.891 0.427 0.884 −4.299 −0.786

Consumer Surplus 69.025 88.685 71.417 92.873 3.472 4.722

Average Price 60.295 83.876 71.065 86.718 3.384 17.855

Average Marginal Cost 60.032 83.423 70.795 86.266 3.408 17.949

Average Market Shares 0.097 0.107 0.0955 0.107 −1.404 0.000

Product Variety 0.428 0.478 0.482 0.558 12.561 16.736

Firm Entry 0.526 0.621 0.599 0.742 13.893 19.506

Note: (1) Surplus values are in USD billion; (2) Prices and costs are in USD per unit; (3) LB and UB refer to the lower and upper
bounds; (4) I draw 100 fixed cost parameter vectors from the confidence region, compute equilibrium outcomes for each, and
construct confidence intervals using the 2.5th and 97.5th percentiles across the parameter vectors.

Table 8 presents the simulation outcomes predicted for supply-side interventions in accordance

with the BEAD program, which entails a 75% reduction in firm fixed costs. The findings suggest

that such policy interventions stimulate significant market entry and product expansion: firm entry

increases by 13.9%-19.5% and product variety grows by 12.6%-16.7%, reflecting heightened com-

petition and expanded consumer choice. This shift in market structure leads to a reduction in the

40Due to the large number of providers grouped under “Other providers”, I do not treat this aggregated category as
a distinct player in the entry game in the counterfactual simulations. Furthermore, since “other providers” are present
in all markets and their identities are unknown, I assume that players take the observed decision of this group as given.
This assumption slightly simplifies the computational burden by reducing the number of potential Nash equilibria. A
similar approach was adopted by Aguirregabiria et al. (2024).
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average firm’s market share and a decline in producer surplus, likely due to intensified competition.

At the same time, the average marginal costs rise by 3.4%-17.9% as firms expand into higher-

cost areas, consistent with the program’s targeting of underserved and/or high-cost areas, and face

increased demand for inputs, particularly skilled labor. These results are consistent with the docu-

mented labor constraints in broadband deployment. The 2023 Fiber Broadband Association report

notes a significant shortage of skilled technicians.41 Such shortages are likely to contribute to rising

marginal costs under the BEAD program, as firms compete for limited labor to scale up deployment.

Additionally, firms adjust their product portfolios by offering higher-quality services, typically at

greater costs, in areas where such products were previously unavailable. These developments col-

lectively contribute to an increase in average prices of 3.4%-17.8%. Despite the rise in prices, the

overall social surplus improves by 3.4%-4.7%, primarily driven by gains in the consumer surplus.

This reflects welfare gains from increased variety despite a moderate cost pass-through.

Table 9 presents the simulation outcomes predicted for the demand-side program, consistent

with ACP, which provides direct financial assistance to consumers. The findings reveal notable

improvements in welfare driven by simultaneous increases in both consumer and producer surplus.

Table 9: Effects of Demand Side Subsidies on Outcomes

Baseline ACP Change (%)

LB UB LB UB LB UB

Social Surplus 69.517 89.534 74.768 97.375 7.563 8.763

Producer Surplus 0.446 0.891 0.476 0.965 6.837 8.288

Consumer Surplus 69.025 88.685 74.247 96.456 7.561 8.753

Average Price 60.295 83.876 58.667 80.986 −3.437 −2.701

Average Marginal Cost 60.032 83.423 58.180 80.220 −3.842 −3.084

Average Market Shares 0.097 0.107 0.099 0.110 2.684 2.890

Product Variety 0.428 0.478 0.429 0.479 0.326 0.374

Firm Entry 0.526 0.621 0.526 0.624 0.000 0.504

Note: (1) Surplus values are in USD billion; (2) Prices and costs are in USD per unit; (3) LB and UB refer to the lower and upper
bounds; (4) I draw 100 fixed cost parameter vectors from the confidence region, compute equilibrium outcomes for each, and
construct confidence intervals using the 2.5th and 97.5th percentiles across the parameter vectors.

Specifically, the total social surplus rises by 7.6-8.8%, with the majority of gains accruing to

41See Fiber Deployment Annual Report 2023, last section on p. 10.
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consumers, as consumer surplus increases by 7.6-8.8%. Producer surplus also improves modestly,

by 6.8-8.3%, reflecting a more favorable market environment in which firms can benefit from in-

creased demand without facing heightened competitive pressures. In contrast, the ACP, modeled

as a $30 reduction in broadband prices for eligible households, leads to substantial welfare gains:

social surplus increases by 7.6%-8.8%, producer surplus by 6.8%-8.3%, and consumer surplus by

7.5%-8.7%. However, its impact on the market structure is limited. The subsidy directly reduces

the financial burden on consumers, resulting in a decrease in average prices by 2.7%-3.4% and

marginal costs by 3.1%-3.8%, likely because of the more efficient utilization of existing capacity

and reduced input intensity. While the average firm’s market share expands by 4.7%-5.2%, firm en-

try remains virtually unchanged at 0.1%-0.6%, and product offerings show only a marginal growth

of 0.3%-0.4%. These findings indicate that demand-side subsidy effectively boosts consumer and

firm welfare by increasing demand. However, it fails to incentivize new firms to enter and induce

them to introduce new products.

Supply-side subsidies promote market expansion and competition, reduce costs, and squeeze firm

profits. Importantly, while supply-side BEAD subsidies achieve the goal of boosting competition

and product offerings, they also generate unintended cost pressures, increasing marginal costs and

prices, a result that contrasts with standard expectations from increased market competition. This

finding underscores the importance of accounting for input market friction and capacity constraints

when designing broadband subsidy policies.

Demand-side subsidies increase prices and demand but do not alter the market structure. The choice

between these policies depends on whether policymakers prioritize market growth, competition, or

direct consumer benefits.
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Table 10: Effects on Outcomes at Different BEAD Intensities

Baseline BEAD 25% fixed-cost subsidy BEAD 50% fixed-cost subsidy BEAD 75% fixed-cost subsidy

Level Level Change (%) Level Change (%) Level Change (%)

LB UB LB UB LB UB LB UB LB UB LB UB LB UB

Social Surplus 69.517 89.534 70.149 91.442 0.909 2.131 70.902 92.493 1.992 3.306 71.869 93.723 3.388 4.686

Producer Surplus 0.446 0.891 0.438 0.892 −1.923 0.101 0.432 0.886 −3.260 −0.591 0.427 0.884 −4.299 −0.786

Consumer Surplus 69.025 88.685 69.672 90.587 0.938 2.145 70.434 91.649 2.042 3.341 71.417 92.873 3.472 4.722

Average Price 60.295 83.876 65.404 84.570 0.828 8.472 68.643 85.115 1.478 13.844 71.065 86.718 3.384 17.855

Average Marginal Cost 60.032 83.423 65.101 84.128 0.845 8.444 68.359 84.682 1.510 13.871 70.795 86.266 3.408 17.949

Average Market Shares 0.097 0.107 0.097 0.107 −0.012 −0.123 0.097 0.107 −0.176 0.139 0.096 0.107 −1.404 0.000

Product Variety 0.428 0.478 0.436 0.505 2.022 5.711 0.452 0.528 5.776 10.617 0.482 0.558 12.561 16.736

Firm Entry 0.526 0.621 0.532 0.668 1.205 7.484 0.556 0.701 5.794 12.900 0.599 0.742 13.893 19.506

Note: (1) Surplus values are in USD billion; (2) Prices and costs are in USD per unit; (3) LB and UB refer to lower and upper bounds; (4) I draw 100 fixed cost parameter vectors from the confidence region, compute equilibrium outcomes for each, and
construct confidence intervals using the 2.5 and 97.5 percentiles across parameter vectors.

39



7 Cost-Benefit Analysis

To make welfare results more actionable for policymakers, I complement the structural analysis

with a simple cost–benefit analysis. Using the estimated welfare changes (in billions of dollars) as

the benefits and program spending as the costs, I compute the benefit-cost ratios (BCR). Specifi-

cally, for each program, I compute the BCR as

BCR =
Total Welfare Gains

Program Expenditure
,

where Total Welfare Gains denotes the change in total surplus, defined as the sum of consumer

and producer surpluses relative to the no-subsidy baseline, and Program Expenditure represents the

total fiscal cost of the subsidy program, calculated as the sum of payments made under the policy.42

To calculate the ACP cost, I multiply the $30 subsidy by the number of eligible subscribers in

the dataset. For the BEAD program, I compute the total cost using the distribution of firms’ fixed

costs using (16) over a grid of 100 fixed-cost values based on the estimates reported in Table 7.

The bounds are then computed by taking the minimum and maximum values across the implied

grid of 100 total fixed costs. The program cost is obtained by multiplying these bounds by the

corresponding subsidy rates of 25%, 50%, and 75%. Importantly, the BEAD program is a one-time

investment that generates a stream of benefits over a long horizon and must be incorporated into

the computation of the BCR.43

Table 11 presents the annual cost–benefit analysis (CBA) of the ACP and BEAD programs. The

results highlight a clear contrast between demand- and supply-side subsidies. For ACP, the BCR

ranges from 1.28 to 1.91, indicating that affordability subsidies deliver welfare gains above their

costs, although the magnitude remains modest. In contrast, the BEAD program yields far greater

fiscal returns. At a 25% subsidy rate, the BCR ranges from 6.70 to 10.70, and at 50% it remains

strong at 7.34–8.30. At 75%, while absolute welfare gains continue to rise, the BCR stabilizes

42I limit the Program Expenditure costs that can be captured within the model, recognizing that it is nearly impossible
to account for all relevant costs, such as administrative expenses, monitoring and compliance costs, or indirect fiscal
effects, which lie outside the scope of the structural framework.

43I adopt a time horizon of T = 25, following Grunvalds et al. (2017), which supports a 25-year “industry-accepted”
lifetime. For the discount rate, I consider a range consistent with U.S. federal guidelines provided in the OMB Circular
A-4. Furthermore, I do not take into account dynamic adjustments (e.g., depreciation of infrastructure, technology
upgrades, shifts in demand.
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at around 7.83–8.31, reflecting the diminishing efficiency of additional subsidies. This suggests

that most welfare improvements can be achieved at moderate subsidy levels (25–50%), with higher

intensities offering lower incremental returns relative to the cost. From a policy perspective, these

findings suggest that ACP plays a useful role in improving household affordability, whereas BEAD

is more cost effective for long-term digital inclusion. Moreover, the evidence points to an optimal

range for BEAD subsidies at 25–50%, where welfare gains are maximized relative to fiscal costs.

Appendix I examines the sensitivity of the results to alternative discount rates and time horizons,

showing findings that are broadly consistent with the recommended optimal range.

Table 11: Annual Cost-Benefit Analysis of ACP and BEAD Programs

∆Social Surplus (Billion $) Program Cost (Billion $) BCR

Program Subsidy level LB UB LB UB LB UB

ACP $30/month household subsidy 5.251 7.841 4.103 4.103 1.280 1.911

BEAD 25% fixed-cost subsidy 11.005 33.224 1.003 2.427 6.697 10.704

BEAD 50% fixed-cost subsidy 24.117 51.526 2.006 4.854 7.338 8.300

BEAD 75% fixed-cost subsidy 40.956 72.944 3.009 8.381 7.834 8.308

Notes: (1) LB and UB denote lower and upper bounds, respectively. (2) Annual welfare gains are $0.632–1.908 (25%), $1.385–2.959 (50%), and $2.352–4.189

(75%) billion. (3) Welfare gains are discounted over a 25-year horizon based on Grunvalds et al. (2017), whereas program costs are incurred upfront. (4) The

discount rate is set to δ = 3, which follows OMB Circular A-4 (2023). (5) The Benefit–Cost Ratio (BCR) is computed as discounted benefits divided by discounted

costs at each rate.

8 Concluding Remarks

This paper examines the impact of subsidies on consumer welfare and the market structure in the

U.S. broadband industry, focusing on two types of interventions introduced by Congress in 2021:

demand-side subsidies targeting consumers and supply-side programs aimed at providers. These

interventions primarily seek to enhance consumer accessibility and support the development of

broadband infrastructure.

Using a difference-in-differences design with continuous treatment, I analyze how broadband

prices and service quality evolve across states with different levels of exposure to federal broadband

subsidies. The reduced-form evidence indicates that states receiving higher per-capita allocations

experience relative declines in prices and improvements in product quality following the policy
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announcement. Reduced-form analyses are valuable because they enable credible causal inference

on policy exposure and shed light on the timing and persistence of program effects on key out-

comes such as prices and quality. However, they are inherently limited in their ability to uncover

underlying behavioral mechanisms or to evaluate counterfactual policy designs. To overcome these

limitations, I estimate a structural model of a two-stage game in which firms first choose their

product portfolios and then compete in prices. Demand elasticities, markups, and marginal costs

are recovered from the demand system following Berry (1994). The supply-side estimation of

product offerings and entry builds on Fan and Yang (2024), which is well suited to settings with

many firms and rich product choice sets.

The results from the structural model estimation reveal that consumers dislike higher prices,

tend to prefer faster download speeds up to a certain threshold, and generally avoid products with

data caps. On the supply side, marginal costs increase significantly with downstream speed and

high-performance features, reflecting infrastructure and quality maintenance costs. Furthermore,

fixed costs increase with market size. After validating the model using industry evidence, I use the

estimated parameters to simulate policy-relevant counterfactual scenarios and assess the effects of

subsidy programs on key equilibrium outcomes. The findings suggest that a supply-side subsidy,

modeled as a reduction in firms’ average fixed costs, promotes market expansion by increasing firm

entry and product variety. Conversely, demand-side subsidies reduce prices and stimulate demand

but have a minimal impact on market structure. Overall, consumer surplus gains are significantly

larger under demand-side subsidies than under supply-side interventions. Consumer-side subsidies

deliver immediate and cost-effective affordability gains, whereas infrastructure subsidies reshape

market competition to generate long-term efficiency, albeit at higher fiscal costs.
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Appendix

A Data Construction

A.1 Urban Rate Survey

The primary data source is the Urban Rate Survey (URS), which is obtained from the following

link: https://www.fcc.gov/economics-analytics/industry-analysis-division/urban-rate-survey-data-

resources. The dataset spans 2014 to 2024, with each release referring to the previous calendar

year (i.e., 2013 to 2023). For each year, I extracted the state identifier, technology type, presence

of a data cap, provider name, average upload and download speeds, price (as captured by the To-

talCharge variable), and the corresponding plan availability weight. I harmonize provider names to

account for subsidiaries operating under different labels. Using the Technology variable, broadband

products are classified into four categories: DSL, fixed wireless, cable, and fiber optics. Finally, I

aggregated the data at the state–year–provider–product level.

A.2 FCC Deployment Data

I collected data from the FCC’s Form 477 deployment dataset for the years 2014 to 2023, avail-

able at: https://broadband477map.fcc.gov/#/data-download. I begin by retaining broadband plans

intended for household use. For each year, I extracted the state, provider name, DBA name, max-

imum advertised download and upload speeds, and technology code. I then computed the average

download and upload speeds at the state-provider-DBA-technology level. Using the technology

code variable, broadband products are classified into four categories: DSL (codes 20 to 29), fixed

wireless (code 60), cable (codes 40 to 43), and fiber optics (code 50). Finally, I focus on the

top 19 providers (including subsidiaries), which include Comcast, Charter, Frontier, CenturyLink,

Verizon, Cable One, Inc., Consolidated Communications, GCI Communication Corp., Hawaiian

Telcom, Inc., Mediacom, Midcontinent Communications, New England, Puerto Rico, Starpower

Communications, Suddenlink Communications, CSC Holdings LLC, Time Warner, and a residual

“Other” category.
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A.3 American Community Survey

I extracted data from the American Community Survey (ACS) for 2014 to 2023, available at:

https://www.census.gov/programs-surveys/acs. The key variables include the following:

• B25001: Total number of housing units

• B01002: Median age

• S1903: Median household income

• S1701: Poverty rate

• S2801: Broadband subscription rate

• S0801: Home workability in 2020

For each variable, I used 5-year estimates when available. In years in which the 5-year estimates

are not published, I rely on the corresponding 1-year estimates. The final dataset was aggregated at

the state–year level.

A.4 Final Dataset

First, I estimate the market share of each provider in the dataset, assuming that plan availability in

the Urban Rate Survey (URS) is proportional to the number of broadband subscribers reported in

the American Community Survey (ACS). Providers with market shares below 1% are grouped into

the residual “Other” category. This yields a set of the top 20 providers (including subsidiaries),

which includes: Comcast, Charter, Frontier, CenturyLink, Verizon, Cable One, Inc., Consolidated

Communications, GCI Communication Corp., Hawaiian Telcom, Inc., Mediacom, Midcontinent

Communications, New England, Puerto Rico, Starpower Communications, Suddenlink Communi-

cations, CSC Holdings LLC, Time Warner, and “Other.” To mitigate the influence of extreme values

on the price variable, I winsorize prices at the 1st and 99th percentiles, replacing observations be-

low the 1st percentile and above the 99th percentile with the respective cutoff values. All prices are

then adjusted for inflation and expressed in 2023 dollars using the Consumer Price Index (CPI) from

46

https://www.census.gov/programs-surveys/acs


the U.S. Bureau of Labor Statistics, available at: https://data.bls.gov/pdq/SurveyOutputServlet. Fi-

nally, all data sources were merged to construct a comprehensive panel dataset at the state, year,

provider, and product levels.

B Broadband Products

Figure 7: Differentiated products
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Figure 8: Broadband Products

C Proofs

Proposition 1

Proof: Let ∆ jr f i
(
Y− ji

)
= r f i

(
Yji = 1,Y− ji

)
−r f i

(
Y ji = 0,Y− ji

)
be the difference in the firm f ’ vari-

able profit when the product Yji turns from Yji = 1 to Yji = 0, where ∆ jr f i
(
Y− ji

)
= r f i

(
Y ji = 1,Y− ji

)
−

r f i
(
Yji = 0,Y− ji

)
, and Y− ji represents the observed decision in market i of other products, except

for firm f ’s product j.

Under Assumption 2, the necessary conditions for the observed decision Yi to be an equilibrium

can be written as follows

Yji = 1 =⇒ ∆ jπi f
(
X ji
)
> 0 (30)

If Yji = 1, then (30) implies that

ζ <
∆ jr f i

(
Y− ji

)
−Wiθ

σζ

(31)

Yji = 0 =⇒ ∆ jπi f
(
X ji
)
≤ 0 (32)
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If Yji = 0, then (32) implies that

ζ ≥
∆ jr f i

(
Y− ji

)
−Wiθ

σζ

(33)

D Difference-in-Differences Design with Continuous Treatment

Figure 9: Spatial distribution of key state-level characteristics in 2020 (pre-intervention)

(a) Panel A: Subsidy per capita (2021) (b) Panel B: Housing units per km2 (2020)

(c) Panel C: Median income (2020) (d) Panel D: Percentage of Rurality (2020)
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Figure 10: DiD with Continuous Treatment without covariates

82
84

86
88

90
92

94

Price (Data)

Year

A
ve

ra
ge

 p
ric

e

2016 2018 2020 2022

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Gigabit per second (Data)

Year

A
ve

ra
ge

 G
bp

s

2016 2018 2020 2022

Gigabit per second

Year

E
st

im
at

e

0.
00

0.
10

0.
20

0.
30

2016 2018 2020 2022

Price (2023 $)

Year

E
st

im
at

e

−
0.

02
0.

00
0.

02

2016 2018 2020 2022

Note: The first two rows of the figure display the data: the average price (in 2023 dollars)
and average speed (in gigabits per second). The last row shows the corresponding estimates
generated by the model in (1) without Xi.
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Figure 11: DiD with Continuous Treatment and excluding for the number of underserved areas
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Note: The first two rows of the figure display the data: the average price (in 2023 dollars)
and average speed (in gigabits per second). The last row shows the corresponding estimates
generated by the model in (1) excluding for the number of underserved areas as covariate.
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E Demand and Supply

E.1 First-stage IV regression (demand)

Table 12: First-Stage IV Regressions for Demand Estimation

Nest
(
log(s j/g)

)
Price

(
pi j
)

Upstream (in Gbps) −2.509∗∗∗ −0.085

(0.299) (0.077)

Upstream2 0.082∗∗∗ −0.002

(0.015) (0.003)

Downstream (in Gbps) 2.812∗∗∗ 0.396∗∗∗

(0.302) (0.080)

Downstream2 −0.112∗∗∗ −0.018∗∗∗

(0.012) (0.003)

With Allowance −0.415∗∗∗ −0.030

(0.088) (0.019)

High Speed 0.318∗∗ 0.105∗∗∗

(0.094) (0.014)

z1 0.064 0.015

(0.045) (0.010)

z2 −0.081· −0.023∗

(0.043) (0.010)

z3 0.036∗∗ −0.007∗∗

(0.011) (0.002)

z5 −0.258∗∗∗ -

(0.029)

Observations 2,595 2,595

Adjusted R2 0.608 0.476

Within R2 0.218 0.343

State Fixed Effects Yes Yes

Provider Fixed Effects Yes Yes

Wald Test (Instruments) F(4,2514) = 40.9, p < 0.001 F(3,2515) = 28.2, p < 0.001

Note: (1) z1, z2, z3, and z4 are the BLP instruments defined in Section 4.1. These instruments are constructed from,
respectively, the Upstream, Downstream, and High-Speed indicators, and the average number of competing products. (2)
This table reports the first-stage results for the endogenous variables pi j and log(s j/g). Instruments include rival product
characteristics (upstream, downstream, and high-speed indicators) and the average number of competing products, and
the total number of products (excluding j) for log(s j/g). The F-statistics for joint instrument significance are 40.9 (nest
equation) and 28.2 (price equation), both significant at p < 0.001, well above the usual weak-instrument threshold of 10.
Given that the average number of products per market is relatively small (Ji ≈ 9), these results suggest that BLP-type
instruments are strong and appropriate for this setting.
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E.2 Empirical Distributions

Figure 12: Predicted and Observed Market Shares

0

3

6

9

0.00 0.25 0.50 0.75 1.00
Market Share

D
en

si
ty

Predicted Market Share

True Market Share

Figure 13: Density of Own Price Elasticities and Markup
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Figure 14: Distribution of Demand and Marginal Cost Shocks
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F Product Offerings

F.1 Algorithm

Consider a product portfolio Yi ∈ {0,1}Ji

• Step 1: For each product j offered in market i i.e Yji = 1, draw B = 100 values from the

empirical distribution of ξ̂ ji and η̂ ji. Denote the values by {ξ̂
(b)
ji ,1 ≤ b ≤ B} and {η̂

(b)
ji ,1 ≤

b ≤ B}.

• Step 2: For each b and for each j, compute the marginal costs, optimal prices, and market

shares44.

(i) Compute the marginal cost m̂c(b)ji using (15).

(ii) Compute the optimal prices p̂(b)i by solving the non linear (13)

44According to Nocke and Schutz (2018), a nonlinear pricing equation has a unique solution in the nested logit
framework. To solve for the optimal price, I employed a fixed-point algorithm with a precision threshold of ε = 10−12

and a maximum of 200 iterations. It is important to note that, for a single-product monopoly, the computation of the
expected variable profit does not require this algorithm because the optimal price and corresponding market share can
be directly determined.
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(iii) Finally, compute the shares ŝ(b)ji as follows

ŝ(b)ji =
exp
(

δ̂
(b)
ji /(1− ρ̂)

)
(

D(b)
g

)ρ̂
(

∑g′
(

D(b)
g′

)1−ρ̂
)

where D(b)
g = ∑ j∈Jg exp

(
δ̂
(b)
ji /(1− ρ̂)

)
, δ̂

(b)
ji = X jiβ̂ + α̂ p̂(b)ji + ξ̂

(b)
ji and Jg is the set

of products belonging to group g.

• Step 3: Compute the variable profit for each firm f

r̂i f (Yi) =
1
B

B

∑
b=1

∑
j∈J f i

MiYji

(
p̂(b)ji − ˆcm(b)

ji

)
ŝ(b)ji

G Counterfactual

G.1 Fixed Cost Draw

• Step 1: For each product j of firm f , compute the change in its expected variable profit when

product j enters market i

∆ j
(
Y− ji,X ji

)
= r f i

(
Yji = 1,Y− ji,X ji

)
− r f i

(
Yji = 0,Y− ji,X ji

)
,

where,

Y− ji is the observed decision, but product j. If Yji = 1, define a range of
(
−∞,∆ j

(
Y− ji,X ji

))
.

Otherwise,
(
∆ j
(
Y− ji,X ji

)
,∞
)

• Step 2: Simulate the draws of fixed costs for firm f from a truncated normal distribution with

mean Wjiθ̂ and variance σ̂2
ζ

. The support for the truncated normal distribution is defined in

Step 1. The draws satisfy necessary conditions for the observed Yi to be an equilibrium

• Step 3: Compute r f i
(
Yf i,Y− f i

)
, and the variable profit of firm f for each possible combina-

tion, 2|J f i|− 1 (excluding the case where firm f offers no products), using Algorithm F.1,
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holding the observed decision Y− f i of the other players fixed.

• Step 4: For each draw from Step 2, check whether the firm f ’s best response to Y− f i is Yf i.

If so, keep the set of draws for firm f . Otherwise, return to Step 2 and redraw the fixed costs.

• Step 5: Repeat the process for every firm

G.2 Simulation

Consider a product portfolio Yi ∈ {0,1}Ji

• Step 1: Compute the expected equilibrium variable profits for each firm f ∈ F and for

each Yi ∈ Yi. This requires using Algorithm F.1 for all possible 2|Ji|− 1 market structure

combinations, excluding the case in which there is no player in the market. Store the relevant

equilibrium outcomes, such as variable profit, welfare, prices, and shares.

• Step 2: Use the simulated fixed cost draws from Algorithm G.1 and find the market structure

where the following entry decision holds for every firm f ∈ F

r f i (Yi)− ∑
j∈J f i

Yji ·FC ji (θ)≥ 0 (34)

Denote the set of market structure for which (34) holds as Y 2
i ⊆ Yi

• Step 3: For each firm f and for each Yi =
(
Yf i,Y− f i

)
∈ Y 2

i , find the most profitable product

assortment Yf i while holding competitors’ Y− f i fixed. Denote the set of product assortments

as Y 3
i ⊆ Y 2

i . The set of product assortments Y 3
i contains all Nash equilibria in which any

deviation is not profitable.

This set typically includes the observed decision, as the fixed cost draws are made to ensure

that the observed decision is a Nash equilibrium.

• Step 4: Construct the bound of the equilibrium object of interest by finding min and max

across the Y 3
i
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H Two-step Inference Procedure

The following two-step procedure allows for the computation of the critical value, as proposed in

Section 4.1.2. on page 1880 Chernozhukov et al. (2019).

• Step 1: Let 1 < β < α/2 be a tuning parameter and Φ(·) be the cumulative distribution

function of the standard normal distribution. Define

k̂n =
k

∑
l=1

I
{√nm̄n,l

(
θ ,σζ

)
σ̂n,l (θ ,σ)

>−2ĉn,k
(
1−β ;θ ,σζ

)}
, (35)

where

ĉn,k
(
1−β ;θ ,σζ

)
=

 Φ−1 (1−β/k)√
1−Φ−1 (1−β/k)2 /n

 . (36)

• Step 2: Define the critical value of the test as

ĉn
(
1−α;θ ,σζ

)
=

 Φ−1 (1− (α −2β )/k̂n
)√

1−Φ−1
(
1− (α −2β )/k̂n

)2
/n

 . (37)

Following the recommendation in Chernozhukov et al. (2019), I set the tuning parameter to β =

α/50 with α = 0.05 (see Section 6.1 in Chernozhukov et al. (2019)).

Once the critical value ĉn(1−α;θ ,σζ ) is obtained, I begin by considering a wide range of pos-

sible values for the parameter pair
(
θ ,σζ

)
. This initial set is then refined by excluding inconsistent

values, that is, points rejected by the test statistic. From the remaining admissible region, I con-

struct a fine grid of 10,000 points for
(
θ ,σζ

)
, with each parameter taking 100 evenly spaced values.

Finally, I identify the grid points that satisfy (29) corresponding to the parameter combinations that

are not rejected under the null hypothesis.
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I Sensibility for Cost-Benefit Analysis

Table 13: Cost-Benefit Analysis of BEAD Program under Alternative Discount Rates (25-Year Horizon)

∆Social Welfare (Billion $) Program Cost (Billion $) CBR

Discount rate Program LB UB LB UB LB UB

BEAD at 25% fixed-cost subsidy

δ = 0.02 12.339 37.251 1.643 3.104 7.509 12.001

δ = 0.03 11.005 33.224 1.643 3.104 6.697 10.704

δ = 0.05 8.907 26.891 1.643 3.104 5.421 8.664

δ = 0.07 7.365 22.235 1.643 3.104 4.482 7.164

BEAD at 50% fixed-cost subsidy

δ = 0.02 27.040 57.770 3.287 6.208 8.227 9.306

δ = 0.03 24.117 51.526 3.287 6.208 7.338 8.300

δ = 0.05 19.520 41.704 3.287 6.208 5.939 6.718

δ = 0.07 16.140 34.483 3.287 6.208 4.911 5.555

BEAD at 75% fixed-cost subsidy

δ = 0.02 45.919 81.784 4.930 9.312 9.315 8.783

δ = 0.03 40.956 72.944 4.930 9.312 8.308 7.834

δ = 0.05 33.149 59.040 4.930 9.312 6.724 6.340

δ = 0.07 27.409 48.817 4.930 9.312 5.243 5.560

Notes: (1) LB and UB denote lower and upper bounds, respectively. (2) Annual welfare gains are $0.632–1.908 (25%), $1.385–2.959

(50%), and $2.352–4.189 (75%) billion. (3) Welfare gains are discounted over a 25-year horizon, while program costs are incurred upfront.

(4) Discount rates follow OMB Circular A-4 (2023). (5) The Benefit–Cost Ratio (BCR) is computed as discounted benefits divided by

discounted costs at each rate.
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Table 14: Cost-Benefit Analysis of BEAD Program under Alternative Discount Rates (30-Year Horizon)

∆Social Welfare (Billion $) Program Cost (Billion $) CBR

Discount rate Program LB UB LB UB LB UB

BEAD at 25% fixed-cost subsidy

δ = 0.02 14.155 42.732 1.643 3.104 8.614 13.767

δ = 0.03 12.387 37.398 1.643 3.104 7.538 12.049

δ = 0.05 9.715 29.331 1.643 3.104 5.912 9.450

δ = 0.07 7.843 23.676 1.643 3.104 4.772 7.628

BEAD at 50% fixed-cost subsidy

δ = 0.02 31.019 66.271 3.287 6.208 9.438 10.676

δ = 0.03 27.147 57.998 3.287 6.208 8.260 9.343

δ = 0.05 21.291 45.487 3.287 6.208 6.478 7.327

δ = 0.07 17.187 36.718 3.287 6.208 5.229 5.915

BEAD at 75% fixed-cost subsidy

δ = 0.02 52.676 93.819 4.930 9.312 10.685 10.075

δ = 0.03 46.100 82.106 4.930 9.312 9.351 8.818

δ = 0.05 36.156 64.395 4.930 9.312 7.334 6.916

δ = 0.07 29.186 51.981 4.930 9.312 5.582 5.920

Notes: (1) LB and UB denote lower and upper bounds, respectively. (2) Annual welfare gains are $0.632–1.908 (25%), $1.385–2.959 (50%),

and $2.352–4.189 (75%) billion. (3) Welfare gains are discounted over a 30-year horizon, whereas program costs are incurred upfront. (4)

Discount rates follow OMB Circular A-4 (2023). (5) The Benefit–Cost Ratio (BCR) is the ratio of discounted benefits to discounted costs at

each rate.
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Table 15: Cost-Benefit Analysis of BEAD Program under Alternative Discount Rates (50-Year Horizon)

∆Social Welfare (Billion $) Program Cost (Billion $) CBR

Discount rate Program LB UB LB UB LB UB

BEAD at 25% fixed-cost subsidy

δ = 0.02 19.860 59.956 1.643 3.104 12.085 19.317

δ = 0.03 16.261 49.092 1.643 3.104 9.896 15.817

δ = 0.05 11.538 34.832 1.643 3.104 7.021 11.222

δ = 0.07 8.722 26.332 1.643 3.104 5.308 8.484

BEAD at 50% fixed-cost subsidy

δ = 0.02 43.522 92.982 3.287 6.208 13.242 14.978

δ = 0.03 35.636 76.134 3.287 6.208 10.843 12.264

δ = 0.05 25.284 54.019 3.287 6.208 7.693 8.702

δ = 0.07 19.114 40.836 3.287 6.208 5.816 6.578

BEAD at 75% fixed-cost subsidy

δ = 0.02 73.908 131.633 4.930 9.312 14.992 14.136

δ = 0.03 60.516 107.782 4.930 9.312 12.276 11.575

δ = 0.05 42.938 76.474 4.930 9.312 8.710 8.213

δ = 0.07 32.459 57.811 4.930 9.312 6.209 6.584

Notes: (1) LB and UB denote lower and upper bounds, respectively. (2) Annual welfare gains are $0.632–1.908 (25%), $1.385–2.959 (50%),

and $2.352–4.189 (75%) billion. (3) Welfare gains are discounted over a 50-year horizon, whereas program costs are incurred upfront. (4)

Discount rates follow OMB Circular A-4 (2023). (5) The Benefit–Cost Ratio (BCR) is computed as discounted benefits divided by discounted

costs at each rate.
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